Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Netw Neurosci ; 8(1): 241-259, 2024.
Article in English | MEDLINE | ID: mdl-38562295

ABSTRACT

We propose a novel approach for the reconstruction of functional networks representing brain dynamics based on the idea that the coparticipation of two brain regions in a common cognitive task should result in a drop in their identifiability, or in the uniqueness of their dynamics. This identifiability is estimated through the score obtained by deep learning models in supervised classification tasks and therefore requires no a priori assumptions about the nature of such coparticipation. The method is tested on EEG recordings obtained from Alzheimer's and Parkinson's disease patients, and matched healthy volunteers, for eyes-open and eyes-closed resting-state conditions, and the resulting functional networks are analysed through standard topological metrics. Both groups of patients are characterised by a reduction in the identifiability of the corresponding EEG signals, and by differences in the patterns that support such identifiability. Resulting functional networks are similar, but not identical to those reconstructed by using a correlation metric. Differences between control subjects and patients can be observed in network metrics like the clustering coefficient and the assortativity in different frequency bands. Differences are also observed between eyes open and closed conditions, especially for Parkinson's disease patients.

2.
Neurobiol Aging ; 137: 78-93, 2024 May.
Article in English | MEDLINE | ID: mdl-38452574

ABSTRACT

Oddball task-related EEG delta and theta responses are associated with frontal executive functions, which are significantly impaired in patients with dementia due to Parkinson's disease (PDD) and Lewy bodies (DLB). The present study investigated the oddball task-related EEG delta and theta responses in patients with PDD, DLB, and Alzheimer's disease dementia (ADD). During visual and auditory oddball paradigms, EEG activity was recorded in 20 ADD, 17 DLB, 20 PDD, and 20 healthy (HC) older adults. Event-related EEG power spectrum and phase-locking analysis were performed at the delta (1-4 Hz) and theta (4-7 Hz) frequency bands for target and nontarget stimuli. Compared to the HC persons, dementia groups showed lower frontal and central delta and theta power and phase-locking associated with task performance and neuropsychological test scores. Notably, this effect was more significant in the PDD and DLB than in the ADD. In conclusion, oddball task-related frontal and central EEG delta and theta responses may reflect frontal supramodal executive dysfunctions in PDD and DLB patients.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Aged , Lewy Body Disease/psychology , Lewy Bodies , Electroencephalography
3.
Clin EEG Neurosci ; : 15500594241237912, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483843

ABSTRACT

Miners working underground face some risk factors that affect the nervous system-such as high noise, dark environment, chronic stress, and exposure to toxic gases. However, it is not known whether these risk factors affect the cognition of miners. In this study, the cognitive changes of miners were examined through event-related oscillations via electroencephalogram (EEG). Twenty underground miners and control groups, equal to each other in age, education level, and working duration, participated in this study. Neuropsychological tests were applied to all participants to examine their cognitive characteristics. Then, 20-channel EEG was recorded for electrophysiological changes during visual oddball paradigm. Event-related power spectrum and phase locking were analyzed in delta (0.5-3.5), theta (4-7), and alpha (8-13 Hz) frequency bands. It was determined that the delta responses that emerged during the target stimulus differed between the two groups in terms of phase locking (p < 0.05). Considering event-related alpha responses, a statistical difference was found regarding power spectrum and phase locking (p < 0.05). Moreover, the alpha power spectrum in the miners was found to be negatively statistically correlated with working duration (p < 0.05). This study determined that the event-related electrophysiological responses of the miners were negatively affected depending on the working conditions. In addition, neuropsychological assessment determined miners had deficiencies in learning and memory skills and many other cognitive functions such as attention, behavioral inhibition, and visual perception.

4.
Andrology ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482942

ABSTRACT

BACKGROUND AND OBJECTIVE: This study aimed to assess the protective ability of edaravone on testicular torsion-detorsion injury in rats. METHODS: Eighteen adult male Sprague-Dawley rats were randomly divided into three groups: Sham group (control, n = 6); testicular torsion/detorsion (T/D group, n = 6) and T/D+edaravone (T/D+E group, n = 6). The spermatic cords of rats of the T/D group and the T/D+E group were rotated 720° in a clockwise direction and maintained for 120 min in this torsion position. Around 90 min after the torsion, edaravone at a dose of 10 mg/kg dissolved in saline was administered IP to the T/D+E group. The testicle was counter-rotated to its normal position to allow reperfusion for 4 h. Left testes of each animal were excised 240 min after beginning of reperfusion. Oxidative stress markers (TAS, TOS, SOD, and MDA) and apoptotic pathways (Caspase 3, Caspase 8, Caspase 9, Bcl-2, and Bax,) were assessed by ELISA methods. Also, testicles were subjected to the histopathologic and ultrasound examinations. RESULTS: Ultrasound imaging showed that edaravone reduced the surface area and increased vascularization in testicles with T/D (p < 0.0001, p < 0.05, respectively). Edaravone pretreatment markedly decreased the levels of MDA, TOS, Bcl-2, Bax, Caspase 3, Caspase 8, and Caspase 9 (p < 0.0001). Also, it increased significantly TAS levels (p < 0.0001) and reduced insignificantly SOD activity. Histopathologic examinations demonstrated that edaravone significantly attenuated the histological damage caused by T/D in testicles. CONCLUSION: Taken together, the findings indicate that pretreatment of edaravone has protective effect against testicular T/D injury.

5.
Neurobiol Aging ; 137: 19-37, 2024 May.
Article in English | MEDLINE | ID: mdl-38402780

ABSTRACT

Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alpha Rhythm , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Follow-Up Studies , Rest , Electroencephalography/methods , Cognitive Dysfunction/diagnosis , Biomarkers , Cerebral Cortex
6.
Neurobiol Aging ; 135: 1-14, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142464

ABSTRACT

Here, we hypothesized that the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms during the transition from eyes-closed to -open condition might be lower in patients with Parkinson's disease dementia (PDD) than in patients with Alzheimer's disease dementia (ADD). A Eurasian database provided clinical-demographic-rsEEG datasets in 73 PDD patients, 35 ADD patients, and 25 matched cognitively unimpaired (Healthy) persons. The eLORETA freeware was used to estimate cortical rsEEG sources. Results showed substantial (greater than -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the healthy control seniors and the ADD patients. These results suggest that PDD patients show poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. That neurophysiological biomarker may provide an endpoint for (non) pharmacological interventions for improving vigilance regulation in those patients.


Subject(s)
Alzheimer Disease , Dementia , Parkinson Disease , Humans , Alpha Rhythm/physiology , Parkinson Disease/complications , Dementia/etiology , Cerebral Cortex/physiology , Rest/physiology , Electroencephalography/methods
7.
Cogn Neurodyn ; 17(6): 1447-1461, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974585

ABSTRACT

Sense of personal perspective is crucial for understanding in attentional mechanisms of the perception in "self" or "other's" body. In a hand laterality judgment (HLJ) task, perception of perspective can be assessed by arranging angular orientations and depths of images. A total of 11 healthy, right-handed participants (8 females, mean age: 38.36 years, education: 14 years) were included in the study. The purpose of this study was to investigate behavioural and cortical responses in low-frequency cortical rhythms during a HLJ task. A total of 80-visual hand stimuli were presented through the experiment. Hand visuals were categorized in the way of side (right vs. left) and perspective (1st vs. 3rd personal perspective). Both behavioural outcomes and brain oscillatory characteristics (i.e., frequency and amplitude) of the Electroencephalography were analysed. All reaction time and incorrect answers for 3rd person perspective were higher than the ones for 1st person perspective. Location effect was statistically significant in event-related theta responses confirming the dominant activity of theta frequency in spatial memory tasks on parietal and occipital areas. In addition, we found there were increasing in delta power and phase in hand visuals with 1st person perspective and increasing theta phase in hand visuals with 3rd person perspective (p < 0.05). Accordingly, a clear dissociation in the perception of perspectives in low-frequency bands was revealed. These different cortical strategy in the perception of hand visual with and without perspectives may be interpreted as delta activity may be related in self-body perception, whereas theta activity may be related in allocentric perception.

8.
Front Hum Neurosci ; 17: 1218559, 2023.
Article in English | MEDLINE | ID: mdl-37822709

ABSTRACT

Introduction: Inhibitory control develops gradually from infancy to childhood and improves further during adolescence as the brain matures. Related previous studies showed the indispensable role of task-related alpha power during inhibition both in children and young adults. Nonetheless, none of the studies have been able to investigate the direct differences in brain responses between children and young adults when confronted with a stimulus that should be inhibited. Because, unlike event-related designs, task-related designs involve continuous tasks over a certain period, which precludes the possibility of making such a comparison. Accordingly, by employing event-related design, the present study first time in the literature, aimed to analyze the event-related alpha phase locking and event-related alpha synchronization/ desynchronization to differentiate the inhibitory processes in children compared to young adults. Methods: Twenty children between the ages of 6 to 7 years and 20 healthy young adult subjects between the ages of 18 to 30 years were included in the study. Day-night Stroop task was applied to all subjects during 18-channel EEG recordings. Event-related time-frequency analysis was performed with the complex Morlet Wavelet Transform for the alpha frequency band (8-13 Hz). Event related spectral perturbation (ERSP) in three different time windows (0-200 ms, 200-400 ms, 400-600 ms) and Event-related phase locking in the early time window (0-400 ms) was calculated. Results: The children had increased alpha power in early and late time windows but decreased alpha phase locking in the early time windows compared to young adults. There were also topological differences between groups; while young adults had increased alpha phase-locking in frontal and parietal electrode sites, children had increased occipital alpha power and phase locking. Discussion: The shift in event-related alpha power observed from posterior to anterior regions with age may suggest a progressive maturation of the frontal areas involved in inhibitory processes from childhood to adulthood. The results of the present study showed that children and young adults had different EEG oscillatory dynamics during inhibitory processes at alpha frequency range.

9.
Cereb Cortex ; 33(20): 10514-10527, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37615301

ABSTRACT

Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.

10.
Clinics (Sao Paulo) ; 78: 100271, 2023.
Article in English | MEDLINE | ID: mdl-37639911

ABSTRACT

AIM: This study aimed to evaluate the expression levels of miR-99b and miR-135b in peritoneal carcinoma and liver metastases associated with Colorectal Cancer (CRC), assess their association with the intracellular signaling pathway proteins Kirsten Rat Sarcoma Virus (KRAS) and Akt, and investigate their effects on survival. MATERIALS AND METHODS: Changes in the KRAS gene and Akt proteins, expression levels of miR-99b and miR-135b, and factors affecting survival were compared between colorectal cancer-associated peritoneal carcinomatosis and liver metastasis. RESULTS: The expression levels of miR-99b and miR-135b and the immunohistochemical grade classification score of Akt were higher in colorectal cancer, peritoneal carcinomatosis, and liver metastasis than in normal tissues (p < 0.05). MiR-99b expression was highest in CRC, whereas miR-135b expression was highest in peritoneal carcinomatosis (p < 0.05). The expression level of miR-99b decreased and that of miR-135b increased in peritoneal and liver metastases compared with that in the tumor tissue. MiR-99b, Akt, and recurrence were risk factors that affected the overall survival rate in the model of clinical predictions (p = 0.045, p = 0.006, and p = 0.012, respectively). CONCLUSION: While the expression of miR-99b was highest in the primary tumor, its decrease in liver metastasis and peritoneal carcinomatosis suggests that miR-99b has a protective effect against liver metastasis and peritoneal carcinomatosis. However, the detection of miR-135b expression was highest in peritoneal carcinomatosis and liver metastasis compared with that in the colorectal cancer tissues suggesting that it facilitates peritoneal carcinomatosis and liver metastasis. Furthermore, miR-99b, KRAS mutations, and Akt are risk factors for the overall survival of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , MicroRNAs , Peritoneal Neoplasms , Humans , Colorectal Neoplasms/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Peritoneal Neoplasms/genetics , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras)/genetics
11.
J Neural Eng ; 20(2)2023 03 31.
Article in English | MEDLINE | ID: mdl-36944236

ABSTRACT

Objective.In the last decades, machine learning approaches have been widely used to distinguish Parkinson's disease (PD) and many other neuropsychiatric diseases. They also speed up the clinicians and facilitate decision-making for several conditions with similar clinical symptoms. The current study attempts to detect PD with dementia (PDD) by event-related oscillations (EROs) during cognitive processing in two modalities, i.e. auditory and visual.Approach.The study was conducted to discriminate PDD from healthy controls (HC) using event-related phase-locking factors in slow frequency ranges (delta and theta) during visual and auditory cognitive tasks. Seventeen PDD and nineteen HC were included in the study, and linear discriminant analysis was used as a classifier. During classification analysis, multiple settings were implemented by using different sets of channels (overall, fronto-central and temporo-parieto-occipital (TPO) region), frequency bands (delta-theta combined, delta, theta, and low theta), and time of interests (0.1-0.7 s, 0.1-0.5 s and 0.1-0.3 s for delta, delta-theta combined; 0.1-0.4 s for theta and low theta) for spatial-spectral-temporal searchlight procedure.Main results.The classification performance results of the current study revealed that if visual stimuli are applied to PDD, the delta and theta phase-locking factor over fronto-central region have a remarkable contribution to detecting the disease, whereas if auditory stimuli are applied, the phase-locking factor in low theta over TPO and in a wider range of frequency (1-7 Hz) over the fronto-central region classify HC and PDD with better performances.Significance.These findings show that the delta and theta phase-locking factor of EROs during visual and auditory stimuli has valuable contributions to detecting PDD.


Subject(s)
Dementia , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Dementia/diagnosis , Electroencephalography/methods
12.
Clin EEG Neurosci ; 54(4): 379-390, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36177504

ABSTRACT

Parkinson's disease (PD) is a movement disorder caused by degeneration in dopaminergic neurons. During the disease course, most of PD patients develop mild cognitive impairment (PDMCI) and dementia, especially affecting frontal executive functions. In this study, we tested the hypothesis that PDMCI patients may be characterized by abnormal neurophysiological oscillatory mechanisms coupling frontal and posterior cortical areas during cognitive information processing. To test this hypothesis, event-related EEG oscillations (EROs) during counting visual target (rare) stimuli in an oddball task were recorded in healthy controls (HC; N = 51), cognitively unimpaired PD patients (N = 48), and PDMCI patients (N = 53). Hilbert transform served to estimate instantaneous phase and amplitude of EROs from delta to gamma frequency bands, while modulation index computed ERO phase-amplitude coupling (PAC) at electrode pairs. As compared to the HC and PD groups, the PDMCI group was characterized by (1) more posterior topography of the delta-theta PAC and (2) reversed delta-low frequency alpha PAC direction, ie, posterior-to-anterior rather than anterior-to-posterior. These results suggest that during cognitive demands, PDMCI patients are characterized by abnormal neurophysiological oscillatory mechanisms mainly led by delta frequencies underpinning functional connectivity from frontal to parietal cortical areas.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Humans , Electroencephalography/adverse effects , Brain , Cognition/physiology
13.
Neurobiol Aging ; 115: 88-108, 2022 07.
Article in English | MEDLINE | ID: mdl-35512497

ABSTRACT

Please modify the Abstract as follows:Here we tested if the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms from the eye-closed to the eyes-open condition may differ in patients with dementia due to Lewy Bodies (DLB) and Alzheimer's disease (ADD) as a functional probe of the dominant neural synchronization mechanisms regulating the vigilance in posterior visual systems.We used clinical, demographical, and rsEEG datasets in 28 older adults (Healthy), 42 DLB, and 48 ADD participants. The eLORETA freeware was used to estimate cortical rsEEG sources.Results showed a substantial (> -10%) reduction in the posterior alpha activities during the eyes-open condition in 24 Healthy, 26 ADD, and 22 DLB subjects. There were lower reductions in the posterior alpha activities in the ADD and DLB groups than in the Healthy group. That reduction in the occipital region was lower in the DLB than in the ADD group.These results suggest that DLB patients may suffer from a greater alteration in the neural synchronization mechanisms regulating vigilance in occipital cortical systems compared to ADD patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Aged , Alpha Rhythm/physiology , Cerebral Cortex/physiology , Electroencephalography/methods , Humans , Lewy Bodies , Rest/physiology
14.
Int J Psychophysiol ; 177: 179-201, 2022 07.
Article in English | MEDLINE | ID: mdl-35588964

ABSTRACT

Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Acetylcholinesterase , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors , Electroencephalography , Evoked Potentials/physiology , Humans
15.
Sci Rep ; 12(1): 2562, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169227

ABSTRACT

Over the past few years, it has become standard to describe brain anatomical and functional organisation in terms of complex networks, wherein single brain regions or modules and their connections are respectively identified with network nodes and the links connecting them. Often, the goal of a given study is not that of modelling brain activity but, more basically, to discriminate between experimental conditions or populations, thus to find a way to compute differences between them. This in turn involves two important aspects: defining discriminative features and quantifying differences between them. Here we show that the ranked dynamical stability of network features, from links or nodes to higher-level network properties, discriminates well between healthy brain activity and various pathological conditions. These easily computable properties, which constitute local but topographically aspecific aspects of brain activity, greatly simplify inter-network comparisons and spare the need for network pruning. Our results are discussed in terms of microstate stability. Some implications for functional brain activity are discussed.

16.
Psychophysiology ; 59(5): e13934, 2022 05.
Article in English | MEDLINE | ID: mdl-34460957

ABSTRACT

Cerebrospinal and structural-molecular neuroimaging in-vivo biomarkers are recommended for diagnostic purposes in Alzheimer's disease (AD) and other dementias; however, they do not explain the effects of AD neuropathology on neurophysiological mechanisms underpinning cognitive processes. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association reviewed the field literature and reached consensus on the event-related electroencephalographic oscillations (EROs) that show consistent abnormalities in patients with significant cognitive deficits due to Alzheimer's, Parkinson's (PD), Lewy body (LBD), and cerebrovascular diseases. Converging evidence from oddball paradigms showed that, as compared to cognitively unimpaired (CU) older adults, AD patients had lower amplitude in widespread delta (>4 Hz) and theta (4-7 Hz) phase-locked EROs as a function of disease severity. Similar effects were also observed in PD, LBD, and/or cerebrovascular cognitive impairment patients. Non-phase-locked alpha (8-12 Hz) and beta (13-30 Hz) oscillations were abnormally reduced (event-related desynchronization, ERD) in AD patients relative to CU. However, studies on patients with other dementias remain lacking. Delta and theta phase-locked EROs during oddball tasks may be useful neurophysiological biomarkers of cognitive systems at work in heuristic and intervention clinical trials performed in AD patients, but more research is needed regarding their potential role for other dementias.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Biomarkers , Electroencephalography/methods , Humans
17.
Cereb Cortex ; 32(10): 2197-2215, 2022 05 14.
Article in English | MEDLINE | ID: mdl-34613369

ABSTRACT

In the present retrospective and exploratory study, we tested the hypothesis that sex may affect cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms recorded in normal elderly (Nold) seniors and patients with Alzheimer's disease and mild cognitive impairment (ADMCI). Datasets in 69 ADMCI and 57 Nold individuals were taken from an international archive. The rsEEG rhythms were investigated at individual delta, theta, and alpha frequency bands and fixed beta (14-30 Hz) and gamma (30-40 Hz) bands. Each group was stratified into matched females and males. The sex factor affected the magnitude of rsEEG source activities in the Nold seniors. Compared with the males, the females were characterized by greater alpha source activities in all cortical regions. Similarly, the parietal, temporal, and occipital alpha source activities were greater in the ADMCI-females than the males. Notably, the present sex effects did not depend on core genetic (APOE4), neuropathological (Aß42/phospho-tau ratio in the cerebrospinal fluid), structural neurodegenerative and cerebrovascular (MRI) variables characterizing sporadic AD-related processes in ADMCI seniors. These results suggest the sex factor may significantly affect neurophysiological brain neural oscillatory synchronization mechanisms underpinning the generation of dominant rsEEG alpha rhythms to regulate cortical arousal during quiet vigilance.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alpha Rhythm/physiology , Alzheimer Disease/psychology , Cerebral Cortex , Cognitive Dysfunction/psychology , Electroencephalography/methods , Female , Humans , Male , Rest/physiology , Retrospective Studies
18.
Brain Res ; 1747: 147042, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32758480

ABSTRACT

The healthy maturation of the brain is one of the intriguing topics that need to be investigated to understand human brain and child development. The present study aimed to investigate the development of memory processes both for auditory and visual memory using electroencephalography (EEG)-Brain Dynamics methodologies. Sixteen healthy children between the ages of 6 and 7 years and eighteen healthy young adults (age: 21.32 ± 3.28 years) were included in the study. EEG was recorded from 18 channels during the visual and auditory memory paradigms. Two different subtests of the WISC-IV IQ test were applied to all children. Event-related theta (4-7 Hz), alpha (8-13 Hz) power and phase-locking were analyzed. The young adults had higher memory performance than the children for both auditory and visual paradigms. The children had increased theta phase-locking and left alpha power in response to the remembered objects in comparison to the forgotten objects. The young adults had higher theta and alpha phase-locking than the children over the frontal and central locations (p < 0.05), and the children had higher parietal-occipital alpha phase-locking than the young adults. There was an increase in alpha power in children, whereas young adults had decreased post-stimulus alpha power in response to memory paradigms. The present study showed that frontocentral theta and alpha phase-locking had an essential role in brain maturation and successful memory performance. Event-related theta and alpha responses could be one of the important indicators of the mature and healthy brain, and these responses could change depending on the maturation state and age.


Subject(s)
Alpha Rhythm/physiology , Auditory Perception/physiology , Cerebral Cortex/physiology , Memory/physiology , Theta Rhythm/physiology , Visual Perception/physiology , Child , Electroencephalography , Female , Humans , Male , Neuropsychological Tests , Young Adult
19.
Int J Psychophysiol ; 153: 65-79, 2020 07.
Article in English | MEDLINE | ID: mdl-32339563

ABSTRACT

The research on the abnormalities of event-related oscillations in Parkinson's disease (PD) was mostly studied with cognitively normal patients. The present study aims to show the adverse effects of cognitive decline in PD patients via the EEG-Brain Oscillations approach by comparing the electrophysiological responses in two modalities, i.e. auditory, and visual in which PD group show deficit. We conducted a study in which we analyzed event-related theta power and phase-locking during auditory and visual oddball paradigm. Cognitively normal PD (PDCN) patients (N = 15), PD with mild cognitive impairment (PDMCI) patients (N = 22), PD dementia (PDD) patients (N = 11) and healthy controls (HC) (N = 17) were included in the study. Neuropsychological assessments were applied to all participants. There was a gradual decrease in scores of neuropsychological tests (HC, PDCN, PDMCI, PDD, respectively). Most of the neuropsychological test scores of the participants were highly correlated with the theta power and theta phase locking values, especially over frontal-central areas. HC had higher theta phase-locking and power in comparison to PDMCI and PDD. The differentiation between HC and PDCN was specific to frontal-central areas. Theta power and theta phase-locking were decreased overall locations in PDMCI and PDD both during visual and auditory oddball paradigms compared with PDCN. The results indicate that theta responses in PD patients decreased gradually as the cognitive decline increased. We can conclude that complex abnormalities in their neurotransmitter and neuronal signal systems that occur with the progression of the disease could be responsible for these results.


Subject(s)
Auditory Perception/physiology , Cognitive Dysfunction/physiopathology , Cortical Synchronization/physiology , Dementia/physiopathology , Evoked Potentials/physiology , Parkinson Disease/physiopathology , Theta Rhythm/physiology , Visual Perception/physiology , Aged , Aged, 80 and over , Attention/physiology , Cognitive Dysfunction/etiology , Dementia/etiology , Female , Humans , Male , Middle Aged , Parkinson Disease/complications
20.
PeerJ ; 8: e8330, 2020.
Article in English | MEDLINE | ID: mdl-31938578

ABSTRACT

Transcutaneous Electrical Nerve Stimulation (TENS) is used not only in the treatment of pain but also in the examination of sensory functions. With aging, there is decreased sensitivity to somatosensory stimuli. It is essential to examine the effect of TENS application on the sensory functions in the brain by recording the spontaneous electroencephalogram (EEG) activity and the effect of aging on the sensory functions of the brain during the application. The present study aimed to investigate the effect of the application of TENS on the brain's electrical activity and the effect of aging on the sensory functions of the brain during application of TENS. A total of 15 young (24.2 ± 3.59) and 14 elderly (65.64 ± 4.92) subjects were included in the study. Spontaneous EEG was recorded from 32 channels during TENS application. Power spectrum analysis was performed by Fast Fourier Transform in the alpha frequency band (8-13 Hz) for all subjects. Repeated measures of analysis of variance was used for statistical analysis (p < 0.05). Young subjects had increased alpha power during the TENS application and had gradually increased alpha power by increasing the current intensity of TENS (p = 0.035). Young subjects had higher alpha power than elderly subjects in the occipital and parietal locations (p = 0.073). We can, therefore, conclude that TENS indicated increased alpha activity in young subjects. Young subjects had higher alpha activity than elderly subjects in the occipital and somatosensory areas. To our knowledge, the present study is one of the first studies examining the effect of TENS on spontaneous EEG in healthy subjects. Based on the results of the present study, TENS may be used as an objective method for the examination of sensory impairments, and in the evaluative efficiency of the treatment of pain conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...